Birzeit University Mathematics Department Math 337

Third Exam -solution First Semester 2021/2022

Q1: (77 points)) Prove or disprove the following

- If G is an abelian group of order 20 then G has an element of order 5 True: By Cauchy's theorem of finite abelian groups
- 2) If G is abelian then G/N is abelian for any $N \triangleleft G$. True: Let $xN, yN \in G/N$, then xNyN = xyN = yxN = yNxN
- 3) If G is cyclic then G/N is cyclic for any N ⊲ G.
 True: Let G =< g >, then gN generates G/N, since if xN ∈ G/N, then there is an n ∈ Z such that x = gⁿ, so xN = gⁿN = (gN)ⁿ
- **4** If $N \triangleleft G$, and G/N is abelian then G is abelian. False: Let $G = A_4, N = Z(A_4)$
- **5** If G/Z(G) is abelian then G is abelian.

False: same in 4

6 If G/Z(G) is cyclic then G is abelian.

7 If G, H are groups and, $f: G \to H$ is a group homomorphism and $a \in G$ with f(a) = b, |a| = 4, then |b| = 4

False: take any group with at least two elements and $f: G \to G, f(x) = e, \forall x \in G$

8 If G, H are groups and, $f: G \to H$ is a group isomorphism and $a \in G$ with f(a) = b, |a| = 4, then |b| = 4

True: see notes

9 For any group $G, Z(G) \lhd G$.

True: see notes

10 If G is a group and H a subgroup of [G : H] = 2, then H is a normal subgroup of G True: see notes

see notes or book

11) $A_n \lhd S_n$

True: see notes or use 10

Q2: (30 points))

- 1) State and prove Cauchy's Theorem for finite abelian groups. see notes
- 2) State and prove the first isomorphism theorem for groups (FTOGH) see notes
- 3) Let G be a group, A a subgroup of B and both normal subgroups of G. Prove that $(G/A)/(B/A) \cong G/B$

 $f:G/A\to G/B$ by f(gN=gB) and show it is well defined onto group hom with $\ker(f)=B/A$